
Systematic non-adherence: supplementary material

1 Correlations in previously-used models

1.1 Random model

In the random model in round i we have:

Xi =

{
1, with probability c,

0, else,
(1)

So the mean and variance are given by

E(Xi) = c, (2)

var(Xi) = E(X2
i )− E(Xi)

2, (3)

= c(1− c), (4)

and the covariance between rounds is given by

cov(Xi, Xj) = E(XiXj)− E(Xi)E(Xj), (5)

= c2 − c2, (6)

= 0, (7)

so that the correlation is also 0.

1.2 Systematic model

In the random model in round i we have a subpopulation of size (1− c) that never attend treatment and
a subpopulation of size c that always attend. Since each individual does the same thing in each round,
the correlation between rounds is exactly 1.

1.3 Semi-systematic model

In the ‘semi-systematic’ model in round i we have:

Xi =

{
1, with probability a

1−c
c ,

0, else,
(8)

where a is a uniformly distributed random number on [0, 1]. Now the mean is given by

E(Xi) =

∫ 1

0

a
1−c
c d a, (9)

= c, (10)

and the variance by

var(Xi) = E(X2
i )− E(Xi)

2, (11)

=

∫ 1

0

a
1−c
c d a− c2, (12)

= c(1− c), (13)
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and the covariance between rounds is given by

cov(Xi, Xj) = E(XiXj)− E(Xi)E(Xj), (14)

=

∫ 1

0

a
1−c
c a

1−c
c d a− c2, (15)

=
c

c− 2
− c2, (16)

so that the correlation is

corr(Xi, Xj) =
covXi, Xj√
varXi varXj

, (17)

=
c
c−2 − c

2

c(1− c)
, (18)

=
1− c
2− c

. (19)

1.4 Griffin, 2010 variable correlation schemes

This scheme was first introduced by Griffin et al. (2010) and subsequently used by Irvine et al. (2015).
The authors used a method where increasing a parameter, ρ increased the correlation between rounds,
by giving each individual, i, a normally distributed random number ui ∼ N(u0, σ

2). Then in each round
individual i is treated if z ∼ N(ui, 1) is less than zero. So if ui is very large and positive (or negative)
then individual i is very likely to draw positive (respectively, negative) z ∼ N(ui, 1). So the width of the
distribution N(u0, σ

2) controls the ‘systematicness’ of the treatment campaign. To have a given coverage,
c, requires u0 = −Φ−1(c)

√
1 + σ2, and for a correlation of ρ between the values of z in different rounds

we require σ2 = ρ/(1− ρ). So for ρ = 0 the z are uncorrelated between rounds, whereas for ρ = 1 the z
are completely correlated between rounds. However, the random variable given by whether z is less than
zero does not have correlation ρ.

1.5 Controlled correlation scheme

1.5.1 Method

We wish to generate a sequence of random variables Yi = (y1i , . . . , y
N
i ), (where N is the population size

and yi = {0, 1}) in which E(Yi) = µyI, ∀i and corr(yki , y
k
j ) = ρ, ∀i, j, k. We do this using the following

algorithm: for round 1, take Y1 = Bernouilli(µy); then for subsequent rounds take Yi = Bernouilli(λi),
where

λi =
µy(1− ρ) + ρRi

1 + (i− 2)ρ
, (20)

and Ri =
∑i−1
j=1 Yi, (i.e. the kth element is the number of rounds attended so far by individual k after

i− 1 rounds).

1.5.2 Proof

Let Xi = (Y1, . . . ,Yi−1)T , and E(Yi|Xi = xi) = µy + bTi (xi − E(Xi)). Then

cov(Xi,Yi) = E [(Xi − E(Xi))(Yi − µy)] , (21)

=
∑
xi

(xi − E(Xi))(1− µy)P (Xi = xi)(µy + bTi (xi − E(Xi)))∑
xi

−(xi − E(Xi))µyP (Xi = xi)
[
1− (µy + bTi (xi − E(Xi)))

]
, (22)

=
∑
xi

(xi − E(Xi))P (Xi = xi)b
T
i (xi − E(Xi)), (23)

= cov
(
Xi, b

T
i Xi

)
, (24)

= bTi cov(Xi,Xi). (25)
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So to achieve some given covariance matrix si := cov(Xi,Yi) we need to solve bTi = siG
−1
i , where

Gi = cov(Xi,Xi).
In our case, since we want a correlation of ρ then the required covariance is given by si = cov(Xi,Yi) =

(cov(Yi,Y1), . . . , cov(Yi,Yi−1)) = (ρσ, . . . , ρσ)T , where σ2 = µy(1−µy) is the variance of Yi. The matrix
Gi is defined by

(Gi)jk = cov(Yj,Yk) =

{
ρσ, for j 6= k,

σ, for j = k.
(26)

The inverse is given (Poularikas, 1998) by

G−1
i =

1

σ(1− ρ)

(
I− ρJ

1 + (i− 2)ρ

)
, (27)

where I is the identity matrix and J is a matrix of ones. Hence

(bi)j = G−1
i si =

ρ

1 + (i− 2)ρ
, ∀j, (28)

and the conditional expectation (or, equivalently for a Bernouilli random variable, the probability of
success) is given by

µy + bTi (xi − E(Xi)) =
µy(1− ρ) + ρ

∑i−1
j=1 yj

1 + (i− 2)ρ
. (29)

In addition, E(Y1) = µy, as required, and if E(Yj) = µy for j = 1, ldots, i− 1 then

E(Yi) = µy +

i−1∑
j=1

∑
y

bij(y − µj)P (Yj = y), (30)

= µy +

i−1∑
j=1

bTi E((Yj − µy)), (31)

= µy, (32)

and so by induction E((Yi) = µy ∀i, as required.

1.5.3 Equivalence to a simpler scheme

In fact it turns out that this scheme is equivalent to giving each person a parameter that gives their
probability of attending any round (which is fixed for that person), but drawing that parameter from
a Beta distribution with parameters α = µy(1 − ρ)/ρ) and β = (1 − µy)(1 − ρ)/ρ. This can be seen
by de Finetti’s theorem, since the scheme produces an exchangeable sequence of random variables (i.e.
ones where the joint distribution between any two rounds is the same). De Finetti’s theorem states that
any exchangeable sequence of random variables can be rewritten by giving each individual a parameter
that gives their probability of attending any round. Since our scheme changes probabilities over different
rounds in a manner equivalent to a Polya urn model, our probabilities must be drawn from a Beta
distribution, and the parameters can be found by equating the mean and correlations from the two
methods.

1.5.4 Correlation with other random variables

If Yi is a Bernouilli random variable with parameter λi, where

λi =
µy(1− ρ) + ρRi

1 + (i− 2)ρ
, (33)

and we take a random variable Zi with mean (conditioned on the value of Yi) of ηi and variance σz where

ηi = µz + c(yi − µy), (34)
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where µz is the desired mean of Zi. Now

cov(Zi,Yi) = λi(1− µy)E(Zi − µz|Yi = 1)− (1− λi)µyE(Zi − µz|Yi = 1), (35)

= λi(1− µy)c(1− µy)− (1− λi)µyµyc, (36)

= c(λi − 2λiµy + µ2
y). (37)

So if we want corr(Zi,Yi) = ρz then we take

c =
ρzσz

√
µy(1− µy)

λi − 2λiµy + µ2
y)
. (38)

since corr(Zi,Yi) = cov(Zi,Yi)/(var(Zi)var(Yi)).
Hence for a binary random variable then, we take Zi to be a Bernouilli random variable with parameter

ηi, where

ηi = µz +
ρz
√
µz(1− µz)

√
µy(1− µy)

λi − 2λiµy + µ2
y)

(yi − µy). (39)

Whereas for a gamma distributed random variable with mean µz and variance σz then

ηi = µz +
ρzσz

√
µy(1− µy)

λi − 2λiµy + µ2
y)

(yi − µy). (40)

and Zi has scale parameter

θi =
σz
ηi
, (41)

and shape parameter

ki =
ηi
θi
. (42)

1.6 Correlations between treatment and infection risk

We approach this using a very simple model, in which each individual i has some probability Ti of
receiving treatment, and acquires disease at some rate βi, then their probability Pi(t) of being infected
at time t is given by

dPi
dt

= βi(1− Pi)− TiPi, (43)

Pi(Ti, βi, t) =
βi + Tie

−t(Ti+βi)

βi + Ti
. (44)

To find the prevalence in the population we want to find the mean value of Pi over f(Ti, βi), the joint
distribution of Ti and βi. If the f(Ti, βi) is sufficiently tightly distributed around its mean values, then
we may take a Taylor expansion around those values:

〈Pi(Ti, βi, t)〉 ≈〈Pi(T̄ , β̄) + (Ti − T̄ )
∂Pi
∂T

(T̄ , β̄) + (βi − β̄)
∂Pi
∂β

(T̄ , β̄)

+
1

2
(Ti − T̄ )2

∂2Pi
∂T 2

(T̄ , β̄) + (Ti − T̄ )(βi − β̄)
∂2Pi
∂T∂β

(T̄ , β̄) +
1

2
(βi − β̄)2

∂2Pi
∂β2

(T̄ , β̄)〉,

=Pi(T̄ , β̄) +
1

2

∂2Pi
∂T 2

(T̄ , β̄)var(T ) +
∂2Pi
∂T∂β

(T̄ , β̄)corr(T, β)
√
var(T )

√
var(β) +

1

2

∂2Pi
∂β2

(T̄ , β̄)var(β),

(45)

where β̄ and T̄ are the mean values of β and T , respectively. This allows us to assess the impact of the
correlation between T and β on the overall prevalence. In particular,

∂2Pi
∂T∂β

(T̄ , β̄) =
e−t(β+T )

(β + T )3

(
−β + t2T 3 + 2βt2T 2 + β2t2T − β2t+ tT 2 + (β − T )et(β+T ) + T

)
, (46)
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and as t→∞
∂2Pi
∂T∂β

(T̄ , β̄)→ β − T
(β̄ + T̄ )3

, (47)

so positive correlation decreases prevalence if, and only if, treatment is more common than infection (i.e.
if T̄ > β̄). This is intuitively understandable, since if the population is being treated faster than becoming
infected then it is better to treat the subpopulation that is becoming infected faster. Conversely if the
population is becoming reinfected faster than it is possible to treat them, then it is more effective to
focus on the population that are reinfected slowly (i.e. having negative correlation between treatment
and infection).

Interestingly, equation (46) is always positive for small values of t, implying that positive correlation
between treatment and infection always initially increases prevalence. This can be understood, since at
the beginning of a treatment campaign it is better to focus on the ‘easy gains’ by treating those people
that will not quickly become reinfected. The time at which one should switch from focussing on low-risk
to high-risk individuals can be approximately calculated, for any particular parameter set, from equation
(46).

Since this is a very simplified system, which does not include even basic effects such as transmission
from infected individuals to susceptibles, it is unclear whether these results will hold in more realistic
models. To investigate this we plot simulation timecourses and elimination times for our SIS and helminth
simulation models (Figure 1). It is clear that the elimination times do increase with negative correlation
between infection risk and the probability of treatment (Figure 1(b) and (d)). In addition we can see
from the timecourses, that at early times this ordering is reversed, and only becomes clear after some
time (Figure 1(a) and (c)). These simulations therefore are in agreement with our analytical predictions.
We note that, while the long term effects of correlations are enhanced at lower reinfection rates (β), the
reverse ordering after the first round of treatment is enhanced during the first round of reinfection, and
is greater for higher reinfection rates.

We may also calculate how the variance of β and T affects the steady state prevalence. Differentiating
equation (45) with respect to var(β), we obtain

1

2

∂2Pi
∂T 2

(T̄ , β̄) +
1

2
√
var(β)

corr(T, β)
√
var(T )

∂2Pi
∂T∂β

(T̄ , β̄)→
corr(β, T )

√
var(T )(β̄ − T̄ )− 2T̄

√
var(β)

2
√
var(β)(β̄ + T̄ )3

, (48)

as t→∞. So if T̄ > β̄, with high-risk individuals more likely to be treated (i.e. corr(β, T ) > 0), then an
increase in the variance of infection decreases the prevalence. If T̄ < β̄, but with high-risk individuals less
likely to be treated (i.e. corr(β, T ) < 0), then an increase in the variance of infection rates also decreases
the prevalence.

Differentiating equation (45) with respect to var(T ) gives

1

2

∂2Pi
∂T 2

(T̄ , T̄ ) +
1

2
√
var(T )

corr(T, β)
√
var(β)

∂2Pi
∂T∂β

(T̄ , β̄)→
corr(β, T )

√
var(β)(β̄ − T̄ ) + 2β̄

√
var(T )

2
√
var(T )(β̄ + T̄ )3

, (49)

as t→∞. So if T̄ < β̄, with high-risk individuals more likely to be treated (i.e. corr(β, T ) > 0), then an
increase in the variance of treatment increases the prevalence. If T̄ > β̄, but with high-risk individuals less
likely to be treated (i.e. corr(β, T ) < 0), then an increase in the variance of treatment rates also increases
the prevalence. Hence if the correlations are as desired from the earlier analysis of the correlation, then
it is better to have as low a variance in treatment rates across the population as possible.
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(a) SIS simulation timecourses, β = 0.8
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(b) SIS end prevalence, β = 0.8
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(c) Helminth simulation timecourses, β = 0.25
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(d) Helminth end prevalence, β = 0.25

Figure 1: SIS and helminth simulations investigating the effect of correlations between the risk of infection
and the probability of receiving treatment. Figures show: (a) and (c) prevalence in the population during
a treatment campaign; (b) and (d) prevalence after 5 years. In each plot the lines represent different
values of the correlation between infection risk and probabiltiy of receiving treatment, from negative
(blue) to positive (red). SIS plots use an infectivity of β = 0.8 while helminth SIS plots use an infectivity
of β = 0.25, and all plots were averaged over 100 simulations.

6



Poularikas, A. D., 1998. Handbook of formulas and tables for signal processing. Vol. 13. CRC Press.

7


